Relation Inference among Sensor Time Series in Smart Buildings with Metric Learning

Related sensors are exposed to the same real-world events, thus exhibiting correlated changes in their sensor reading time series. However, 1) the event-triggered patterns are not necessarily synchronous and 2) the resulting changes can be distinct.

The input time series: $\mathbf{x} = \{x_1, x_2, \dots, x_T\}$ Short-Time Fourier Transformation:

$$STFT^{(\tau,s)}\{\mathbf{x}\}(m,n) = \sum_{t=1}^{T} \mathbf{x}(t) \cdot \mathbf{w}(t-s)$$

Remove the direct current component and re-arrange the first k coefficients within a chunk into 2k frequency channels: $a_1, b_1, a_2, b_2 \dots a_k, b_k$, where a_n and b_n are the real and imaginary part of the n^{th} complex coefficient. The output of STFT: $\mathbf{X} \in \mathbb{R}^{F \times N}$

The output of the neural networks: $\mathbf{y} = CNN(\mathbf{X})$ The loss function: $L_{comb}(\mathcal{T}) = L_{tri}(\mathcal{T}) + \lambda L_{ang}(\mathcal{T})$ $L_{ang}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{tri}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{tri}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{tri}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{tri}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{tri}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{tri}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_c - \mathbf{y}_n||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_a - \mathbf{y}_p||^2 - \mu ||\mathbf{y}_p||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_p||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[||\mathbf{y}_p||^2 - \mu ||\mathbf{y}_p||^2 \right]_+ L_{trive}(\mathcal{T}) = \left[|$

Shuheng Li, Dezhi Hong, Hongning Wang Peking University, University of California San Diego, University of Virginia

Introduction

 $(m) \cdot e^{-j\frac{2\pi n}{\tau}(t-s\cdot m)}$

$$||\mathbf{y}_a - \mathbf{y}_p||^2 - ||\mathbf{y}_a - \mathbf{y}_n||^2 + \gamma]_+$$

1. VAV assignment accuracy (%) for functional 2. Accuracy (%) for spatial relation inference. relation inference.

Building ID	10312	10320	10381	10596	10606	10642	
Unsupervised							
HMM	18.01	11.50	25.64	21.02	31.59	34.75	
MEMO	90.42	88.50	90.43	91.28	92.16	92.28	
Supervised							
DTW	88.46	25.46	83.81	91.67	55.17	80.78	
DECADE	96.54	77.27	93.33	99.44	85.98	96.08	
WN	97.31	60.91	95.23	99.44	77.93	96.86	
TN	97.30	42.73	96.19	93.33	52.18	96.07	
SSN	97.69	42.73	95.24	97.78	63.67	93.72	
STN	98.07	90.00	96.23	99.44	93.10	98.03	
	-						

3. Cross-building inference accuracy for functional relations across all six buildings: 'X|Y' denotes training on Y and testing on X, and STN is our proposed method.

2) CO2 & Temperature: Distinct Changes

Results

X|Y (Cross-building)

		Edge Accuracy	Room Accu
-		Unsupervised	
-	HMM	12.67	4.00
•	MEMO	19.00	10.00
		Supervised	
•	DTW	37.27 ± 2.40	14.40 ± 2
•	DECADE	12.47 ± 1.61	2.00 ± 6.0
	WN	17.47 ± 2.17	8.00 ± 9.00
-	TN	25.73 ± 1.94	6.00 ± 9.1
•	SSN	67.93 ± 8.66	50.20 ± 14
	STN	$\textbf{88.61} \pm \textbf{2.08}$	80.00 ± 3

4. Functional inference accuracy under one-month v.s., ten-month training data.

	STN	WN	DECAD
One-month	47.27	26.36	30.90
Ten-month	90.00	60.91	77.27
Relative Drop (%)	47.48	56.72	60.01

5. VAV assignment accuracy using different sensor pairs. The left is the result of our model (STN) and the right is the result of MEMO.

VAV \ AHU	Supply AirPress	Supply AirTemp	F
AirFlowVolume	97.69/75.22	97.69/33.63	98
DischargeAirTemp	98.21/57.52	99.11/42.48	97
SpaceTemp	93.07/13.27	91.51/15.04	96

iracy

2.94 5.00 9.80 9.20 4.32 3.79

