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• How to improve the performance of a smart sensing system?
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• How to improve the performance of a smart sensing system?
• Improve the NN model
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Performance

• How to improve the performance of a smart sensing system?
• Improve the NN model
• Improve sensor deployment 
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• In the context of speech sensing, the goal is speech recognition
• NN model

• Input: audio signal
• Output: recognized natural language sentence

• Performance
• Word error rate (WER)
• WER compares the prediction and the actual
    spoken words:
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Benchmark Dataset

• Receiver: 2 ReSpeaker (4 Mic Array)

• Transmitter: 1 MiFA speaker

• We tested the following three environments:
• Receiver locations
• Transmitter locations



• How to find the best location?
1. Deploy the receiver(s)
2. Deploy the transmitter and play 

a set of N speech examples
3. Repeat 2 on other transmitter 

locations
4. Calculate the WER
5. Repeat 1 on other receiver 

locations

Benchmark Dataset
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Benchmark Dataset

• Trained speech recognition model:
• Online: Wav2Vec2 (W2V2) 
• Offline: Tiny Squeezed and Efficient 

W2V2 (SEW-tiny)

[1]

[2]

[1] Baevski, Alexei, et al. “Wav2Vec 2.0: A framework for self-supervised learning of speech representations.”
[2] Wu, Felix, et al. “Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition.” 
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Benchmark Dataset

[1] Baevski, Alexei, et al. “Wav2Vec 2.0: A framework for self-supervised learning of speech representations.”
[2] Wu, Felix, et al. “Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition.” 

• Trained speech recognition model:
• Online: Wav2Vec2 (W2V2) 
• Offline: Tiny Squeezed and Efficient 

W2V2 (SEW-tiny)
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Benchmark Dataset

• Ground truth method (WER) requires certain amount of testing data.

• If we have from up to N = 50 examples to only 1 example, it is not guaranteed that 
WER can always find the best location.

• If we randomly sample the N examples for 1000 times… 

Office             Bedroom    Livingroom



• How to find the best location?
1. Deploy the receiver(s)
2. Deploy the transmitter and play 

a set of N speech examples
3. Repeat 2 on other transmitter 

locations
4. Calculate the WER
5. Repeat 1 on other receiver 

locations
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4.    Use Traditional quality measurements



• Existing speech sensing quality measurements are ineffective.

Related works

Previous 
Metrics

Office Bedroom Living 
room

Methodology

SNR ✖ ✖ ⭕ Statistical

SSIM ✖ ✖ ✖ Statistical

PESQ
(ITU R.862)

✖ ⭕ ⭕ Human
Perceptual

DNSMOS ✖ ⭕ ⭕ Human
Perceptual

STOI ✖ ✖ ✖ Statistical



• Traditional methods take input the raw speech signal, are at the lowest abstraction level.
• Informative but noisy

• Speech recognition model predicts the character-level probability. To get the final 
prediction, the argmax is taken and a merging algorithm is applied. WER is at the highest 
abstraction level.
• Information lose 
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W2V2/SEW-tiny

• We estimate the model prediction uncertainty for data collected at each candidate location
• Model Ensemble

• Monte-Carlo Dropout
• All Layer (AL) / Last Layer (LL)

• Uncertainty Terms
• Total uncertainty (TU) as the entropy of the average over the probability of each model
• Data uncertainty (DU) as the average over the entropy of the probability of each model

Transmitter
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[3] Gal, Yarin, et al. “Dropout as a bayesian approximation: Representing model uncertainty in deep learning.”

[3]



• LL/AL: Last Layer dropout / All Layer dropout

• TU/DU: Total uncertainty / Data Uncertainty

• The proposed method LL-TU outperforms the compared variants and the WER 
baseline

Evaluation
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• We also study the tuning of hyperparameters for LL-TU:
• Dropout rate

• Ensemble size

Evaluation – Hyperparameter



• SQEE achieves good top-3/top-2 accuracy with only 2 examples needed.

• To outperform the performance of SQEE with N = 2, WER needs (7, 4, 13) examples 
in the three environments respectively. 

• Our improvement is 2 – 6 times in term of time efficiency.

Evaluation – Real World Efficacy

WER Office Bedroom Living room

N = 7 4 13



• The framework of SQEE can be generalized to other sensing modalities.

Discussion – Generalization

Transmitter
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Pr = 0.1 Pr = 0.9

[4] Karen, Simonyan, et al. “Very deep convolutional networks for large-scale image recognition.”
[5] Asif, Khan, et al. “Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network.”
[6] Guohao, Lan, et al. “MetaSense: Boosting RF sensing accuracy using dynamic metasurface antenna.”



• We proposed SQEE, a Machine Perception Approach to Sensing Quality Evaluation 
at the Edge
• Improve the performance of NN models from the deployment
• Online / Offline settings

• Built benchmark dataset
• Three different environments
• Benchmark evaluation

• Methodology
• Model ensemble
• Uncertainty quantification for speech recognition

• Extensive experiments
• Outperform baseline method
• Real-world efficacy

• Generalization Discussion

Conclusion – Q&A
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