UC San Diego

SQEE: A Machine Perception Approach to Sensing Quality Evaluation at the Edge by Uncertainty Quantification

Shuheng Li, Jingbo Shang, Rajesh K. Gupta, Dezhi Hong UC San Diego, Amazon

> Speaker: Shuheng Li Email: shl060@ucsd.edu

- How to improve the performance of a smart sensing system?
 - Improve the NN model

- How to improve the performance of a smart sensing system?
 - Improve the NN model
 - Improve sensor deployment

- In the context of speech sensing, the goal is speech recognition
 - NN model
 - Input: audio signal
 - Output: recognized natural language sentence
 - Performance

UC San Diego

 \bigcirc

Q

Benchmark Dataset

- Receiver: 2 ReSpeaker (4 Mic Array)
- Transmitter: 1 MiFA speaker
- We tested the following three environments:
 - Receiver locations
 - Transmitter locations

Benchmark Dataset

Benchmark Dataset

- Trained speech recognition model:
 - Online: Wav2Vec2 (W2V2)^[1]
 - Offline: Tiny Squeezed and Efficient W2V2 (SEW-tiny)^[2]

UC San Diego

[1] Baevski, Alexei, et al. "Wav2Vec 2.0: A framework for self-supervised learning of speech representations."[2] Wu, Felix, et al. "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition."

UC San Diego

[1] Baevski, Alexei, et al. "Wav2Vec 2.0: A framework for self-supervised learning of speech representations."[2] Wu, Felix, et al. "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition."

Related Works

- How to find the best location?
 - 1. Deploy the receiver(s)
 - 2. Deploy the transmitter and play a set of N speech examples
 - 3. Repeat 2 on other transmitter locations
 - 4. UsecTrateition WERality measurements
 - 5. Repeat 1 on other receiver locations

Related works

• Existing speech sensing quality measurements are ineffective.

Previous Metrics	Office	Bedroom	Living room	Methodology
SNR	×	×	0	Statistical
SSIM	*	×	×	Statistical
PESQ (ITU R.862)	×	0	0	Human Perceptual
DNSMOS	×	0	0	Human Perceptual
STOI	×	×	×	Statistical

Methodology

• Traditional methods take input the raw speech signal, are at the lowest abstraction level.

- Informative but noisy
- Speech recognition model predicts the character-level probability. To get the final prediction, the argmax is taken and a merging algorithm is applied. WER is at the highest abstraction level.
 - Information lose

Methodology

UC San Diego

 $\mathcal{H}[\boldsymbol{y}|\boldsymbol{x}] \approx \sum_{\boldsymbol{y}} \left[\frac{1}{M} \sum_{m=1}^{M} -\Pr(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta}^{(m)}) \right] \ln \left[\frac{1}{M} \sum_{m=1}^{M} \Pr(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta}^{(m)}) \right]$

 $\mathbb{E}_{\theta}[\hat{\mathcal{H}}[y|x,\theta]] \approx \frac{1}{M} \sum_{m=1}^{M} \sum_{y=1}^{M} -\Pr(y|x,\theta^{(m)}) \ln\Pr(y|x,\theta^{(m)}).$

• We estimate the model prediction uncertainty for data collected at each candidate location

- Model Ensemble
 - Monte-Carlo Dropout^[3]
 - All Layer (AL) / Last Layer (LL)
- Uncertainty Terms
 - *Total uncertainty* (TU) as the entropy of the average over the probability of each model
 - Data uncertainty (DU) as the average over the entropy of the probability of each model

[3] Gal, Yarin, et al. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning."

Evaluation

UC San Diego

- LL/AL: Last Layer dropout / All Layer dropout
- TU/DU: Total uncertainty / Data Uncertainty
- The proposed method LL-TU outperforms the compared variants and the WER baseline

Office

Bedroom

Livingroom

Evaluation – Hyperparameter

- We also study the tuning of hyperparameters for LL-TU:
 - Dropout rate

(a) W2V2

(c) SEW-tiny

(d) SEW-tiny

UC San Diego

• Ensemble size

ge

Evaluation – Real World Efficacy

• SQEE achieves good top-3/top-2 accuracy with only 2 examples needed.

office	Top-1 Acc	Top-3 Acc	T-R time (s)	bedroom	Top-1 Acc	Top-3 Acc	T-R time (s)	-	living room	Top-1 Acc	Top-2 Acc	T-R time (s)
N = 1	0.414	0.961	15.92	N = 1	0.584	0.887	15.52	-	N = 1	0.796	0.937	17.06
N = 2	0.486	0.972	25.83	N = 2	0.746	0.958	26.03		N = 2	0.902	0.983	25.15
N = 3	0.521	0.991	32.27	N = 3	0.814	0.982	34.60		N = 3	0.958	0.999	33.15
N = 4	0.520	0.998	45.51	N = 4	0.861	0.996	42.62		N = 4	0.972	1.000	46.43
N = 5	0.546	0.998	53.85	N = 5	0.903	1.000	55.54		N = 5	0.989	1.000	54.83
N = 10	0.604	1.000	87.69	N = 10	0.977	1.000	91.50		N = 10	0.999	1.000	95.13

UC San Diego

• To outperform the performance of SQEE with N = 2, WER needs (7, 4, 13) examples in the three environments respectively.

WER	Office	Bedroom	Living room
N =	7	4	13

• Our improvement is 2 - 6 times in term of time efficiency.

Discussion – Generalization

• The framework of SQEE can be generalized to other sensing modalities.

UC San Diego

[4] Karen, Simonyan, et al. "Very deep convolutional networks for large-scale image recognition."

[5] Asif, Khan, et al. "Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network."

[6] Guohao, Lan, et al. "MetaSense: Boosting RF sensing accuracy using dynamic metasurface antenna."

Conclusion – Q&A

- We proposed SQEE, a Machine Perception Approach to Sensing Quality Evaluation at the Edge
 - Improve the performance of NN models from the deployment
 - Online / Offline settings
- Built benchmark dataset
 - Three different environments
 - Benchmark evaluation
- Methodology
 - Model ensemble
 - Uncertainty quantification for speech recognition
- Extensive experiments
 - Outperform baseline method
 - Real-world efficacy
- Generalization Discussion