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Introduction

* How to improve the performance of a smart sensing system?
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Introduction

* How to improve the performance of a smart sensing system?
* Improve the NN model
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Introduction

* How to improve the performance of a smart sensing system?
* Improve the NN model
* Improve sensor deployment
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Introduction

* In the context of speech sensing, the goal is speech recognition
* NNmodel e
* Input: audio signal : "\
* Output: recognized natural language sentence !
* Performance
* Word error rate (WER)

* WER compares the prediction and the actual
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Benchmark Dataset

* Receiver: 2 ReSpeaker (4 Mic Array)
* Transmitter: 1 Mi1FA speaker

* We tested the following three environments:
* Receiver locations
* Transmitter locations

B-3
(b) Bedroom
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Benchmark Dataset

* How to find the best location?

1. Deploy the receiver(s)

2. Deploy the transmitter and play
a set of N speech examples

3. Repeat 2 on other transmitter
locations

4. Calculate the WER

5. Repeat 1 on other receiver
locations

4 Trained A :
Speech Model Testing [
Recognition
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Benchmark Dataset

* Trained speech recognition model:
* Online: Wav2Vec2 (W2V2)"
* Offline: Tiny Squeezed and Efficient

W2V2 (SEW-tiny)®
Real
Testing
Data
4 )
W2V2/SEW-tiny Model Testing |
S )

[1] Baevski, Alexei, et al. “Wav2Vec 2.0: A framework for self-supervised learning of speech representations.”
[2] Wu, Felix, et al. “Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition.”
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Livingroom WER

Office WER Bedroom WER
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[1] Baevski, Alexei, et al. “Wav2Vec 2.0: A framework for self-supervised learning of speech representations.”
[2] Wu, Felix, et al. “Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition.”
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Related Works

* How to find the best location?
1. Deploy the receiver(s)

2. Deploy the transmitter and play
a set of N speech examples

3. Repeat 2 on other transmitter
locations

4. UsicltathtiondV giality measurements

5. Repeat 1 on other receiver
locations

Traditional

Speech Quality
Measurements
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Related works

* Existing speech sensing quality measurements are ineffective.

Previous Office Bedroom Living Methodology
Metrics room

x Statistical

SSIM x x x Statistical
PESQ % O O Human

(ITU R.862) Perceptual
DNSMOS x @ @ Human

Perceptual

STOI b4 b4 b 4 Statistical
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Methodology

Glaracter-level Probabilib
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* Traditional methods take input the raw speech signal, are at t on level.
* Informative but noisy

* Speech recognition model predicts the character-level probability. To get the final
prediction, the argmax 1s taken and a merging algorithm is applied. WER s at the highest
abstraction level.

* Information lose
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Methodology
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* We estimate the model prediction uncertainty for data collected at each candidate location
* Model Ensemble
* Monte-Carlo Dropout -
* All Layer (AL) / Last Layer (LL)

* Uncertainty Terms ;
. 1
* Total uncertainty (TU) as the entropy of the average over the probability of each model "'~ ; M Zl

~Pr(y|x. af"")‘ In

1 M
o Zl Pr(ylx, 6'™)
=

* Data uncertainty (DU) as the average over the entropy of the probability of each model  Eol#iyix.0n ~ - ZlZ—Pr(ylx,e(m))lnPr(ylx,e('"’).
m=1 Y

[3] Gal, Yarin, et al. “Dropout as a bayesian approximation: Representing model uncertainty in deep learning.”
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Evaluation

* LL/AL: Last Layer dropout / All Layer dropout
* TU/DU: Total uncertainty / Data Uncertainty
* The proposed method LL-TU outperforms the compared variants and the WER

baseline
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Evaluation — Hyperparameter

* We also study the tuning of hyperparameters for LL-TU:

* Dropout rate
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Evaluation — Real World Efficacy

* SQEE achieves good top-3/top-2 accuracy with only 2 examples needed.

Top-1 Top-3 T-R Top-1 Top-3 T-R Top-1 Top-2 T-R

: bed . livi :
office Acc Acc  time (s) earoom 1 acc Acc  time (s) PVIRETOOM 1 Ace Acc  time (s)
0.796  0.937 17.06

0.414 0.961 15.92 0.584  0.887 15.52
0.902 0.983 25.15

N=1

N=2 | 0486 0.972 25.83 0.746  0.958 26.03

N=3 | 0521 0.991 32.27 0.814  0.982 34.60 0.958  0.999 33.15
N=4 0.972  1.000 46.43
N=5

N

0.520 0.998 45.51 0.861 0.996 42.62
0.546  0.998 53.85 0.903 1.000 33.54 0.989  1.000 54.83
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* To outperform the performance of SQEE with N =2, WER needs (7, 4, 13) examples
in the three environments respectively.

Wer  office |Bedroom |Livingroom
N= 7 4 13

* Our improvement 1s 2 — 6 times in term of time efficiency.



UC San Diego

Discussion — Generalization

* The framework of SQEE can be generalized to other sensing modalities.
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[4] Karen, Simonyan, et al. “Very deep convolutional networks for large-scale image recognition.”

[5] Asif, Khan, et al. “Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network.”
[6] Guohao, Lan, et al. “MetaSense: Boosting RF sensing accuracy using dynamic metasurface antenna.”
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Conclusion — Q& A

* We proposed SQEE, a Machine Perception Approach to Sensing Quality Evaluation
at the Edge

* Improve the performance of NN models from the deployment
* Online / Offline settings

* Built benchmark dataset
* Three different environments
* Benchmark evaluation

* Methodology
* Model ensemble
* Uncertainty quantification for speech recognition

* Extensive experiments
* Outperform baseline method
* Real-world efficacy

* Generalization Discussion
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