UC San Diego

UniTS: Short-Time Fourier Inspired Neural Networks for Sensory Time Series Classification

Shuheng Li, Ranak Roy Chowdhury, Jingbo Shang, Rajesh K. Gupta, Dezhi Hong University of California, San Diego

Introduction

- Sensory time series classification is a crucial problem
 - Human activity recognition
 - Seizure detection
 - Building occupancy detection

UC San Diego

Human activity recognition

Related works – Traditional methods

- Traditional workflows require heavy duplicated manual labor
 - Environment change: recalibration
 - Data/Task change: design from scratch

Related works – Deep neural networks

- Deep learning techniques are potentiated to generalize well
 - But recent works mainly focus on just one or two types of data

Recent works	Motion data	Medical data	Wave data	Ambient data	Model
MaCNN (IMWUT 18)	0	0	×	0	CNN
Sense-HAR (SenSys 19)	0	×	×	×	CNN
STFNet (WWW 19)	0	×	0	×	STFT + CNN
RFNet (SenSys 20)	×	×	0	×	FFT + LSTM
THAT (AAAI 21)	×	×	0	×	Transformer
LaxNet (WSDM 21)	×	0	×	×	CNN+Attention

Motivation

• Can we design a neural network model that is unified to all the tasks?

- No need for model recalibration
- Perform as well as domain-specified models
- The issue is
 - Some data suits temporal domain: motion data, ambient data
 - Some data suits frequency domain: EEG data, wave signals
 - Noise?
 - Sampling rate?

Motivation – Fourier inspired convolution

- Short time Fourier Transform conducts Fourier transform within a sliding window
 - Fourier weights are explainable and insightful
 - But they are fixed still
- Convolution conducts linear transform within a sliding window
 - Convolution weights are learnable
 - But initialized randomly

STFT Spectrogram

Methodology – Formulation

• 5 sets of sensors

• 3 types of sensors

- 1 Accelerometer
- 1 Gyroscope
- 1 Magnetometer

• 3 axes

UC San Diego

• Each example $X \in \mathbb{R}^{45 \times 256}$ is sampled within fixed time range

Methodology – Temporal Spectral Encoder

• $X_i \in \mathbb{R}^{256}$ is the i-th channel of X

- Fourier Inspired Convolution (FIC)
 - Convolution initialized by Fourier weights
- Virtual Filter
 - Select the most important k virtual frequency channels
- Resolution Preserve Convolution (RPC)
 - Initialized randomly
 - Same size as FIC

Methodology – Virtual spectrogram fusion

• Channel-wise virtual spectrograms are concatenated and convolved for fusion

Methodology – Overview 1

• We then use ResNet¹¹ to model the fused hidden feature

UC San Diego

[1] He, Kaiming, et al. Deep residual learning for image recognition

Methodology – Overview 2

• We adopt the idea of Inception network^[2] and design multi-scale parallel branches with different **TS-Encoder** size and **ResNet** depth.

UC San Diego

[2] Szegedy, Christian, et al. Inception-v4, inception-resnet and the impact of residual connections on learning

Evaluation – Datasets and metrics

• Motion

- Motion sensor dataset
- Activity recognition
- Seizure
 - Brain sculp EEG dataset
 - Seizure detection
- WiFi
 - WiFi dataset
 - Activity recognition
- KETI
 - Building ambient dataset
 - Occupancy detection

Dataset	Sampling Rate	#Instances	#Classes
Motion	30 Hz	11,073	4
Seizure	256 Hz	21,436	2
WiFi	1000 Hz	8,099	7
KETI	0.1 Hz	16,921	2

- Metrics
 - Accuracy
 - F1 score
 - *tp* : true positive
 - *fp*: false positive
 - *fn*: false negative

$$F_1 = \frac{tp}{tp + \frac{1}{2}(fp + fn)}$$

Evaluation – Main result

UC San Diego

• Our model achieves the best performance in average

Data	asets	DWT	ResNet	MaCNN	SenseHAR	STFNets	RFNet-base	THAT	LaxCat	UniTS
Motion	Accuracy	87.43	89.54	88.32	88.90	88.98	90.22	90.35	60.19	91.58
	Macro-F1	89.01	91.36	90.32	88.60	88.52	92.28	92.12	41.47	93.33
Seizure	Accuracy	90.48	88.98	80.92	85.10	82.82	92.71	89.77	87.03	92.38
	Macro-F1	90.44	88.92	80.77	85.10	82.75	92.70	89.76	86.95	92.37
WiFi	Accuracy	55.00	88.00	84.09	94.90	79.75	83.88	93.00	74.63	96.25
	Macro-F1	47.79	86.30	84.05	92.80	74.29	79.31	90.00	71.09	95.38
KETI	Accuracy	95.56	96.05	93.83	96.50	89.18	95.63	96.61	91.28	96.80
	Macro-F1	82.14	83.12	73.54	84.90	69.32	82.97	86.21	71.13	86.32
average	Accuracy	82.12	90.64	86.79	91.35	85.18	90.61	92.43	78.28	94.25
	Macro-F1	77.35	87.43	82.17	87.85	78.72	86.82	89.52	67.66	91.85
	•			•	•	-	•			

Bold: Best Underline: Second Best

Evaluation – Ablation study

• We consider the following variants for ablation study

Evaluation – Robustness

- Our model is robust to
 - The change of data sampling rate
 - The change of input example size
 - Random additive noise in data
 - Missing values in data

Discussion – FIC for Feature Extraction

- As a feature extraction module
- The trained FIC model can replace STFT

Extraction Method	Mo	tion	WiFi		
Extraction Method	Accuracy	Macro-F1	Accuracy	Macro-F1	
STFT	80.50	78.72	55.13	45.34	
FIC Layer	89.40	91.53	90.88	88.96	

Discussion – Explainability

- We study the effect of FIC weights change
- Red indicates FIC highlights these channels

Discussion – Hyperparameter tuning

• Multi-scale branches help the model achieves decent performance without the need of exhaustive hyperparameter search

Conclusion

• We proposed UniTS, a Unified framework for sensory Time Series classification

- TS-Encoder
- Virtual Spectrogram Fusion
- Multi-scale
- Evaluated on four different datasets
 - The state-of-the-art performance
 - Ablation study
 - Robustness
- Verified the explainability and hyperparameter tuning issue
 - Use for feature extraction

Thanks for your attention

• <u>https://github.com/Shuheng-Li/UniTS-Sensory-Time-Series-</u> <u>Classification</u>

• Speaker: Shuheng Li

UC San Diego

• Email: shl060@ucsd.edu