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* Challenge: Existing approaches identify shared patterns (i.e., ransmit updated weights

neurons or layers) in local models and aggregate the common RecipFL Overview. The server transforms client models into directed acyclic graphs (DAGS)
parts. The unshared portion of the large model rarely receives 10 represent the computation flow among operations and trains a central graph hypernetwork

updates or gains benefits from weak collaborators. to generate weights for customized client models.
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Goal: We aim to facilitate reciprocal benefits between strong » In each round, the server randomly selects a subset of clients St, uses the hypernetwork
and weak devices In resource-skewed federated learning to generate model weights {8,,|m € St} and sends them to clients.
environments, incentivizing both devices to actively engage. » The client trains its local model with the initial weight value 8,, = 8,,,. After local training, it
: : sends the updated client model weights back to the server.
Key Contributions . . |
* The server then calculates the client weight change A8,, and update the hypernetwork:
 Address a new research question in federated learning: Can b — & _nsz (V5 8m) T A6
strong devices benefit from weak devices In resource-skewed mESt
environments? * The learning objective of federated learning Is:
° : - . 1 M
Propose a novel f_ramework to effectively generate weights for argming MZ L(GHN(Gn, s D))
heterogeneous client models based on graph hypernetwork, =
compatible with arbitrary model scaling strategies. Strong-to-Weak Device Knowledge Transfer

« Establish the generalization bound of RecipFL through * Generate and train both small and large models on strong devices
theoretical analysis and validate its performance through » Knowledge distillation from large to small model

extensive experiments. 1 1 s
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Code available on GitHub: https://github.com/jilayunz/RecipFL (=1

Experiment Results

Main Experiment results. RecipFL consistently outperforms the compared methods across ~ Compatibility with model scaling strategies. RecipFL Is
all datasets and model scaling strategies, benefiting both strong and weak devices. compatible with various ways of model scaling, showing more

flexibility than existing solutions.
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Exploratory studies. RecipFL exhibits superior scalability and robustness across a range of (a) original model ~ (b) depth-wise  (c) width-wise  (d) architecture-wise

resource skew scenarios compared to the baselines, consistently enhancing the

. More diverse device capacities. RecipFL is not limited to the
performance of both strong and weak devices.

setup of one large and one small model architecture and can
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